From r-spin intersection numbers to Hodge integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hurwitz Numbers and Hodge Integrals

In this paper we find an explicit formula for the number of topologically different ramified coverings C → CP 1 (C is a compact Riemann surface of genus g) with only one complicated branching point in terms of Hodge integrals over the moduli space of genus g curves with marked points.

متن کامل

Hodge Integrals, Hurwitz Numbers, and Symmetric Groups

Abstract. We prove some combinatorial results related to a formula on Hodge integrals conjectured by Mariño and Vafa. These results play important roles in the proof and applications of this formula by the author jointly with ChiuChu Melissa Liu and Kefeng Liu. We also compare with some related results on Hurwitz numbers and obtain some closed expressions for the generating series of Hurwitz nu...

متن کامل

On Hodge Integrals and Hurwitz Numbers

∗ Dept. of Math., University of Stockholm, S-10691, Stockholm, [email protected] † Higher College of Math., Independent University of Moscow, and Institute for System Research RAS, [email protected] ‡ Department of Mathematics, Royal Institute of Technology, S-10044, Stockholm, [email protected] ♮ Dept. of Math. and Dept. of Computer Science, University of Haifa, Haifa 31905, [email protected]...

متن کامل

Hodge Integrals and Hurwitz Numbers via Virtual Localization

Ekedahl, Lando, Shapiro, and Vainshtein announced a remarkable formula ([ELSV]) expressing Hurwitz numbers (counting covers of P with specified simple branch points, and specified branching over one other point) in terms of Hodge integrals. We give a proof of this formula using virtual localization on the moduli space of stable maps, and describe how the proof could be simplified by the proper ...

متن کامل

Hodge Numbers from Picard–Fuchs Equations

Given a variation of Hodge structure over P with Hodge numbers (1, 1, . . . , 1), we show how to compute the degrees of the Deligne extension of its Hodge bundles, following Eskin–Kontsevich–Möller–Zorich, by using the local exponents of the corresponding Picard– Fuchs equation. This allows us to compute the Hodge numbers of Zucker’s Hodge structure on the corresponding parabolic cohomology gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2016

ISSN: 1029-8479

DOI: 10.1007/jhep01(2016)015